Proton Kinetic Effects and Turbulent Energy Cascade Rate in the Solar Wind
نویسندگان
چکیده
منابع مشابه
Proton kinetic effects and turbulent energy cascade rate in the solar wind.
The first observed connection between kinetic instabilities driven by proton temperature anisotropy and estimated energy cascade rates in the turbulent solar wind is reported using measurements from the Wind spacecraft at 1 AU. We find enhanced cascade rates are concentrated along the boundaries of the (β∥, T⊥/T∥) plane, which includes regions theoretically unstable to the mirror and firehose i...
متن کاملSmall scale energy cascade of the solar wind turbulence
Magnetic fluctuations in the solar wind are distributed according to Kolmogorov’s power law f below the ion cyclotron frequency fci. Above this frequency, the observed steeper power law is usually interpreted in two different ways: a dissipative range of the solar wind turbulence or another turbulent cascade, the nature of which is still an open question. Using the Cluster magnetic data we show...
متن کاملTurbulent Spectra in the Solar Wind Plasma
Observations of interstellar scintillations at radio wavelengths reveal a Kolmogorovlike scaling of the electron density spectrum with a spectral slope of −5/3 over six decades in wavenumber space. A similar turbulent density spectrum in the solar wind plasma has been reported. The energy transfer process in the magnetized solar wind plasma over such extended length-scales remains an unresolved...
متن کاملHeating of the solar wind with electron and proton effects
We examine the effects of including effects of both protons and electrons on the heating of the fast solar wind through two different approaches. In the first approach, we incorporate the electron temperature in an MHD turbulence transport model for the solar wind. In the second approach, we adopt more empirically based methods by analyzing the measured proton and electron temperatures to calcu...
متن کاملAn SOC-like avalanche distribution observed in an MHD turbulent cascade in the solar wind
We calculate for the first time the probability density functions (PDFs) P of burst energy e, duration T and inter-burst interval τ for a known turbulent system in nature. Bursts in the earth-sun component of the Poynting flux at 1 AU in the solar wind were measured using the MFI and SWE experiments on the NASA WIND spacecraft. We find P (e) and P (T ) to be power laws, consistent with self-org...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2013
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.111.201101